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ABSTRACT 

Tests were conducted in the AEDC Aerodynamic Wind Tunnel, Transonic (4T), to 
determine optimum operating parameters which minimize tunnel interference effects. The 
tunnel is equipped with inclined hole, variable porosity, test section walls. Pressure 
distributions on a 20-deg cone-cylinder model having a blockage ratio of 1 percent were 
used to select optimum test section wall porosity, wall angle, and tunnel pressure ratio 
through the Mach number range from 0.1 to 1.3. Practically interference-free results were 
achieved at the optimum conditions for all Mach numbers except for the range from 0.95 
to 1.05 where noticeable compression waves impinged upon the model. The 
recommended schedule for wall porosity ranges from 1.5- to 7.0-percent open area, 
dependent upon Mach number. 

wee »or 

iii 



AEDCTR-69-164 

CONTENTS 

Page 

ABSTRACT  iii 
NOMENCLATURE     vi 

I. INTRODUCTION     1 
II.    APPARATUS 

2.1 Tunnel 4T      1 
2.2 Cone-Cylinder Model      1 
2.3 Instrumentation  2 

III. PROCEDURE 
3.1 Test Conditions     2 
3.2 Data Reduction and Precision      2 

IV. RESULTS AND DISCUSSION 
4.1 Subsonic Interference Effects      3 
4.2 Model Pressure Distributions     4 
4.3 Optimum Operating Parameters     5 

V.    CONCLUSIONS     6 
REFERENCES  6 

APPENDIX 
Illustrations 

Figure 

1. Tunnel 4T General Arrangement     11 
2. Model Installation Sketch      12 
3. Photograph of Model Installation      13 
4. Model Pressure Distributions at M = 0.60, 0W = 0     14 
5. Effect of Wall Porosity upon the Model Pressures at M = 0.60, 0W = 0  15 
6. Model Pressure Coefficient Errors at M = 0.60, 0W = 0       16 
7. Mach Number Differences at M = 0.60 and 0.95, 0W = 0     17 
8. Model Pressure Distributions at M = 0.95, 0W = 0     18 
9. Model Pressure Distributions at M = 0.975, 0W = 0     19 

10.   Model Pressure Distributions at M = 1.00 
a. 0W = 0      20 
b. 0W = variable     21 

II. Model Pressure Distributions at M = 1.025 
a. 0W = 0      22 
b. 0W = variable     23 

12. Model Pressure Distributions at M = 1.05 
a. 0W = 0      24 
b. 0W - variable     25 

13. Model Pressure Distributions at M = 1.075 
a. 0W = 0      26 
b. 0W = variable     27 



AEDC-TR-69-164 

Figure Page 

14. Model Pressure Distributions at M = 1.10, 0W = 0       28 
15. Model Pressure Distributions at M = 1.15 

a. 0W = 0    29 
b. By, = variable       30 

16. Model Pressure Distributions at M = 1.20 
a. 0 = 0    31 
b. 0W = variable       32 

17. Model Pressure Distributions at M = 1.30 
a. flw = 0        33 
b. 0W = variable       34 

18. Recommended Tunnel Pressure Ratio Settings, 0W = 0 35 
19. Recommended Wall Porosity Settings, 0W = 0 36 
20. Quantitative Description of the Wall Interference Reduction Obtained 

with Variable Wall Porosity    37 

NOMENCLATURE 

Cp Pressure coefficient, (p - p^Ah 
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M Nominal Mach number 

Mc Equivalent plenum Mach number 

Mi Test section Mach number as defined by tunnel calibration 

M„ Test section Mach number as indicated by model pressures 

p Model static pressure, psfa 

pe Diffuser exit static pressure, psfa 

pt Tunnel stagnation pressure, psfa 
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q] Test section dynamic pressure, psf 

x Model station measured from apex, in. 
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X Tunnel pressure ratio, pt/pe 

a Standard deviation, see Eq. (1) 
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SECTION I 
INTRODUCTION 

The Propulsion Wind Tunnel Facility (PWT) Aerodynamic Wind Tunnel, Transonic 
(4T) at the Arnold Engineering Development Center (AEDC) is equipped with a variable 
porosity, variable wall angle, perforated test section which allows virtual cancellation of 
model-induced disturbances for supersonic Mach numbers. The development of the wall 
configuration is described in Ref. 1. 

The present tests were conducted with the objective of defining the optimum wall 
porosity, wall angle, and tunnel pressure ratio schedule throughout the Mach number 
range from 0.1 to 1.3. These optimum settings were determined by examining static 
pressure distributions on a 20-deg (total-angle) cone-cylinder model of I-percent blockage. 
For subsonic Mach numbers the criteria for selecting the optimum porosity was that 
which minimized the forebody drag error, and the optimum pressure ratio criteria was a 
uniform pressure on the model afterbody. Wall angle variations were not considered for 
subsonic Mach numbers. The criterion for optimum wall porosity and wall angle 
determination at supersonic Mach numbers was a minimum deviation from interference- 
free pressure distributions. 

SECTION II 
APPARATUS 

2.1 TUNNEL 4T 

Tunnel 4T is a closed-loop, continuous flow tunnel with a Mach number range 
from 0.1 to 1.35, a stagnation pressure range from 300 to 3700 psfa, and a stagnation 
temperature range from 80 to 130°F. The general arrangement of Tunnel 4T is sketched 
in Fig. 1, Appendix. 

The test section flow is generated through a two-dimensional, fixed, sonic-block 
nozzle with parallel sidewalls. Supersonic speeds are obtained by expansion through the 
upstream portion of the test section. The top and bottom test section walls may be 
converged or diverged 0.S deg. 

The perforated test section walls are of the variable porosity type with an 
available porosity range from 0- to 10-percent open area. Two plates with identical hole 
geometry are utilized, the airside plate being fixed and the backside or cutoff plate 
sliding upstream for decreasing porosity. The wall geometry and general test section 
arrangement are sketched in Fig. 2. 

The tunnel is equipped with two model support systems: a conventional sector 
for sting-mounted models and a captive trajectory store separation support system. A 
more detailed description of the tunnel and the supporting equipment is given in Ref. 2. 

2.2 CONE-CYLINDER MODEL 

A 20-deg total-angle cone-cylinder model of 1-percent blockage was sting mounted 
at  zero angle  of attack; the installation is shown in Fig. 2. A photograph of the 
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installation is presented as Fig. 3. For this test, nominally 100 static pressure orifices on 
the bottom ray of the model were used. Further description of the model is available in 
Ref. 3. 

2.3  INSTRUMENTATION 

The standard tunnel pressures were measured using servo-driven -mercury 
manometers. The model pressures were measured using 5- and 15-psid self-balancing 
transducers referenced to the tunnel plenum pressure. 

SECTION III 
PROCEDURE 

3.1 TEST CONDITIONS 

Data were obtained throughout the Mach number range at a nominal stagnation 
pressure of 2000 psfa and a stagnation temperature of 100°F. For a few Mach numbers, 
data were obtained utilizing the full range of wall angle, ±0.5 deg, and wall porosity, 
from 0 to 10 percent. 

In general, a desired Mach number was set and the effect of varying wall porosity, 
wall angle, and tunnel pressure ratio was determined. Mach numbers were not set 
precisely on the nominal values because of problems with the tunnel instrumentation. 
However, the data accuracies were unaffected since duplicate backup instrumentation was 
used for data reduction purposes. 

3.2 DATA REDUCTION AND PRECISION 

All of the model and tunnel data were processed on line utilizing the PWT data 
acquisition system. Real-time displays of the model pressure distributions on a cathode 
ray tube allowed rapid determination of the optimum values for the basic tunnel 
parameters: wall porosity, wall angle, and tunnel pressure ratio. 

The model pressures were converted to pressure ratios, p/pt, and computer 
plotted as a function of body station, x/d. These plots were traced for this presentation. 

A statistical description of the magnitude of tunnel interference on the model 
pressures was obtained using the standard deviation, a, defined by 

*2 = ^E[(CP-C4-¥ I(CP-CP,)]2 (1) 
where the summations extend over the entire model, and N is the number of pressure 
orifices. This somewhat unusual formulation was considered necessary because the 
interference-free data (Ref. 3) were available at only discrete Mach numbers, whereas the 
present data deviate from these nominal values as much as AM = 0.02. 



AEDC TR-68-164 

Based on a confidence level of 95 percent, estimates of the random errors in the 
data are: 

AM] ±0.003 

A(p/pt) ±0.001 

AT ±0.1 

A0W ±0.03 

AX ±0.001 

SECTION IV 
RESULTS AND DISCUSSION 

4.1   SUBSONIC INTERFERENCE EFFECTS 

Representative subsonic model pressure distributions are shown in Fig. 4 along 
with empirical interference-free curves based upon the results of Ref. 3. With decreasing 
porosity, the data show progressive deviation from the interference-free curves. This 
deviation is more clearly seen in Fig. 5 where pressure coefficient is used instead of 
pressure ratio to eliminate the influence of slight variations in Mach number. 

. This type of tunnel interference has not been noted in any of the open literature. 
Extrapolation of the afterbody data to the solid wall condition (r = 0) indicates a 
pressure coefficient correction of ACP = -0.07. The classical solid blockage correction 
based upon model volume is ACP = 0.04, (Ref. 4), which is the wrong direction, whereas 
the classical wake blockage correction based upon model drag is insignificant, ACp = 
-0.0005, although in the desired direction. 

The measured interference is fundamentally a simple change in the test section 
Mach number. The interference errors are plotted as a function of model station in Fig. 6 
for two wall porosities. The curves drawn are the pressure coefficient errors which result 
from the given assumed Mach number error: 

CP- CP, = -¥"[M' -M~] <2) 

where 
dC„ 10 5M2 - 10 

dM M(MJ + 5) M(M2 + 5)     P (3) 

The Mach number differences, Mi   - M... are those necessary to match the measured 
afterbody pressure errors. 

The test section Mach number in 4T is determined by calibration (Ref. 5) which 
relates the ratio of plenum pressure and tunnel stagnation pressure (expressed by Mc) to 
the average centerline Mach number. This plenum-stream calibration is a function of 
Mach number, wall porosity, and wall angle. The calibration data for M = 0.60 and 0.9S 



AEDC-TR-69-164 

along with the analytic fit of the data used for data reduction are reproduced in Fig. 7. 
These data were obtained utilizing a centerline static pipe of 2.9-in. diameter which 
extended from the strut sector all the way upstream through the nozzle. Subsequent 
completely empty-tunnel calibrations utilizing static pressure orifices in the test section 
walls essentially duplicated the data shown. It is, therefore, concluded that the measured 
deviations in model pressures are truly model-induced interference and not related to the 
tunnel calibration. 

The model-induced Mach number errors are also given in Fig. 7. The data at M = 
0.60 represent the scatter for the entire model length whereas those for M = 0.95 are 
limited to the cone pressures. The data indicate that a wall porosity of r = 8 to 9 at M = 
0.60 provides zero interference. However, insufficient tunnel calibration data were 
obtained at these higher wall porosity settings to allow complete confidence in the 
measurements. For M = 0.95, it appears that interference-free conditions are obtained 
with r = 6, although the effect is small for T > 2. 

It is expedient to use a constant wall porosity setting for subsonic Mach numbers 
and, therefore, it is recommended that T = 6 be utilized for M < 1.0. Adequate 
calibration data are available throughout the Mach number range at this porosity setting, 
and the interference effects are small. 

The true measure of the detected subsonic interference effects is totally 
dependent on acceptance of the interference-free data of Ref. 3, including the Mach 
number setting accuracies in the Propulsion Wind Tunnel, Transonic (16T). These data 
were reexamined for the present application and were determined to be sufficiently 
accurate, although the precision of any single model pressure measurement was not as 
good as for the present data. The Mach number setting error in 16T at M = 0.6 (Ref. 6) 
is small, AM < 0.003 at most, and in the same direction as 4T so that Mi - M„. for the 
present data is considered quite accurate at M = 0.6. 

In conclusion, it is possible that the subsonic interference effect detected in 
Tunnel 4T is simply a function of the somewhat unique model geometry. As a result of 
the model extending practically to the rear of the test section, being mounted on a rather 
large sting, and in proximity to the sector boom, the model is effectively of infinite 
length insofar as the test section flow is influenced. The classical wall interference 
theories do not consider this specific geometry and one should not expect agreement of 
these theories with the data. However, since the interference can be significantly large, it 
is highly desirable that applicable theoretical and additional experimental work be done. 
Similar interference effects are to be expected with engine-inlet integration tests that use 
model geometries which are also effectively of infinite length. 

4.2  MODEL PRESSURE DISTRIBUTIONS 

The effects of wall porosity and wall angle on the model pressure distributions for 
M = 0.95 through 1.10 are presented in Figs. 8 through 14. The interference-free curves, 
drawn for nominal Mach numbers, are based upon theory and upon empirical results 
from Ref. 3. 
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A threefold reduction in wall interference was obtained in the vicinity of M = 1.1 
with variable porosity compared to that obtained with a constant wall porosity of r = 
6.0. The recommended wall porosity schedule provides practically interference-free results 
above M = 1.15, the deviation being only twice that present in the free stream, and it is 
doubtful that any significant improvements could be made. However, the interference 
effects in the vicinity of M = 1.0 are not insignificant and further wall development is 
recommended. 

SECTION V 
CONCLUSIONS 

The investigation of optimum operating parameters for the FWT Aerodynamic 
Wind Tunnel, Transonic (4T) utilizing a 1-percent blockage cone-cylinder model has 
resulted in the following conclusions: 

1. Practically interference-free data are obtainable throughout the Mach number 
envelope except for the range of M = 0.9S through 1.05. Within this range, the 
shoulder expansion reflects from the wall and impinges on the model as a 
compression. 

2. The recommended wall porosity settings range from 1:5 to 7.0 percent open, 
dependent upon Mach number, with parallel test sectiomwalls. 

3. Utilization of wall angle variations as a supplement to the recommended wall 
porosity schedule produces data somewhat closer to interference-free values than 
that obtainable with parallel walls. However, wall angle variations are not 
recommended because of the added test complexity. 

4. Significant subsonic interference effects were detected which are not presently 
explainable in terms of classical interference theory. Although the interference 
could be practically eliminated with variable porosity, further study of the 
effects is required. 
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Selection of the optimum wall porosity and wall angle settings within the Mach 
number range from M = 0.95 to 1.10 is difficult because of conflicting requirements. The 
flow over the cone is subsonic and, particularly for the lower Mach numbers, wall 
variations directly affect the cone pressures. However, within the shoulder expansion 
from the model to the wall the flow is completely supersonic and a different wall 
boundary condition is required for interference-free conditions. The tunnel 4T wall 
geometry is such that optimum wave cancellation occurs with lower wall porosity settings 
(AT * 1) than those required to achieve the correct cone pressures. Since forebody drag 
measurements are usually considered the most important in the transonic range, the 
recommended wall porosity settings are a compromise favoring those which provide the 
correct cone pressure. 

Within the Mach number range from 0.95 to 1.05, the shoulder expansion reflects 
from the wall and impinges on the model as a compression for all wall settings. This 
interference indicates that the wall is effectively too open to cancel the model 
disturbances, and yet the interference is basically unaffected by wall changes, particularly 
within the Mach number range from 0.95 to 1.0. Wall angle variation as a supplement to 
wall1 porosity variation provides slight improvements in the model pressure distribution 
relative to the parallel wall setting above M = 1.0. 

The model pressure distributions obtained at M = 1.15, 1.2, and 1.3 are shown in 
Figs. 15, 16, and 17, respectively. The data are practically interference free at the 
optimum porosity settings with zero wall angle. Wall angle variation in this Mach number 
range provides no significant improvement in the interference effects. 

4.3  OPTIMUM OPERATING PARAMETERS 

The optimum tunnel pressure ratio for a given Mach number is defined as that 
which minimizes the pressure gradient over the downstream portion of the model. The 
recommended pressure ratio settings for parallel walls are shown in Fig. 18. This curve 
represents a fairing of data obtained throughout the subsonic Mach number range. For 
supersonic Mach numbers the tunnel pressure ratio must be high enough to stabilize the 
shock system from the model support sector, and X = 1.4 has proved to be adequate. 

The recommended wall porosity settings at 0W =0 are given in Fig. 19. Some 
improvements in the model pressure distributions are obtainable with both wall porosity 
and wall angle variations. However, the improvement shown in the model pressure 
distributions using variable wall angle is small, and it is difficult to justify the increased 
tunnel operating complexity. Further, as discussed in Ref. 5, the Mach number setting 
accuracies are poor with nonzero wall angles; therefore, it is recommended that variable 
wall angle not be utilized. 

A quantitative description of the magnitude of wall interference in Tunnel 4T is 
presented in Fig. 20. The 2 a deviation of the pressure coefficients from interference-free 
values is a statement that 95 percent of the data are within ±2 a of interference-free 
values (provided one assumes a normal distribution). The bottom curve in Fig. 20 is the 
tunnel centerline nonuniformity which, of course, is included in the model data. 
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APPENDIX 

ILLUSTRATIONS 
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